SySCD
A System-Aware Parallel
Coordinate Descent Algorithm

Nikolas loannou* Celestine Mendler-Dinner* Thomas Parnell
IBM Research UC Berkeley IBM Research

*equal contribution

Parallel Coordinate Descent

min f(Acy) + Z g:(0s) Parallel Coordi.nfate Descent . _
; 1: Input: Training data matrix A € R**"
Initial model a =0, v =0
: fort=1,2,... do
parfor j € RANDOMPERMUTATION(n) do
Find § minimizing f(v + A. ;0) + g;(a; + 9)
aj < o +)
V < V+4+0A.

end parfor

end for

Parallel Coordinate Descent

min f(Aa) + S gilay) Parallel Coordinate Descent

1: Input: Training data matrix A € R4*"
Initial model aa =0, v =0

 Multi-core parallelism has previously 2: fort =1,2,... do
been taken into account, e.g. [Hsieh’15] 3: parfor j € RANDOMPERMUTATION(n) do
4: Find § minimizing f(v + A. ;6) + g;(a; + 9)
* There are many more system . O o 40
bottlenecks one could incorporate into . SA
the algorithm design, i.e., | V VT 5
7: end parfor
1. Inefficient cache accesses 8: end for

2. \Write-contention onv
3. Scalability across NUMA nodes

— SySCD addresses all of these

Parallel Coordinate Descent

min fAa) + Z gi(y) Parallel Coordinate Descent

1: Input: Training data matrix A € R4*"
Initial model a =0, v=0

e Multi-core parallelism has previously 2: fort =1,2,... do
been taken into account, e.g. [Hsieh’15] 3: parfor j € RANDOMPERMUTATION(n) do
4: Find § minimizing f(v + A. ;6) + g;(a; + 9)
* There are many more system 5 a; — o + 6
bottlenecks one could incorporate into - SA.
the algorithm design, i.e., | V VoA
7 end parfor
1. Inefficient cache accesses 8: end for

2. Write-contention on v
3. Scalability across NUMA nodes

— SySCD addresses all of these

Resolving write-contention on v

CPU
I

Resolving write-contention on' v — replicate v across threads

CPU
I

Resolving write-contention on' v — replicate v across threads

Parallel Coordinate Descent

1: Input: Training data matrix A € R**"
Initial model a =0, v =0

2: fort=1,2,...do __~ #threads
3: v, < Vv Vpé€|[P]
4: parfor j € RANDOMPERMUTATION(n) do
5: Find § minimizing f(v,, A. ;, ;) + g;(a; + 6)
6: o < o + 0 \
7 Vp < Vp +0A. o N e
’ auxiliary model inspired by CoCoA [Smith’18]
8: end parfor
9: V<D Vp
10: end for

Connection to Distributed Methods

worker worker worker
— — —
T I I
shared vector v -

MOde| ar 1

deta A (AR RERRRRR

worker

e datais partitioned across

workers

e each worker has its own

replica of the shared
vector which is
synchronized periodically

Connection to Distributed Methods

one physical machine

* Inthe parallel setting a

worker corresponds to a
shared vector v — core

MOde| ar 1

AT —————e
et separability is not

communication- but
implementation-efficiency

Repartitioning

one physical machine

* Inthe parallel setting we
can afford to repartition
shared vector v — the data in each round

MOde| ar 1

T A
deta & [ITHIHHFNENI mprov

System-Aware Coordinate Descent (SySCD)

 Combination of distributed methods with repartitioning

v" high implementation efficiency X
poster

v’ theoretically sound parallel method #39

v’ scales to large degrees of parallelism

poster

#39

« Additional optimizations (not covered in this talk)

v NUMA - affinity

v" alignment with cache access pattern

» > 10x faster than sate-of-the-art asynchronous CD methods

