
SySCD
A System-Aware Parallel

Coordinate Descent Algorithm

Nikolas Ioannou* Celestine Mendler-Dünner* Thomas Parnell
IBM Research UC Berkeley IBM Research

*equal contribution

Parallel Coordinate Descent

Parallel Coordinate Descent

• Multi-core parallelism has previously
been taken into account, e.g. [Hsieh’15]

• There are many more system
bottlenecks one could incorporate into
the algorithm design, i.e.,

1. Inefficient cache accesses
2. Write-contention on v
3. Scalability across NUMA nodes

→ SySCD addresses all of these

Parallel Coordinate Descent

• Multi-core parallelism has previously
been taken into account, e.g. [Hsieh’15]

• There are many more system
bottlenecks one could incorporate into
the algorithm design, i.e.,

1. Inefficient cache accesses
2. Write-contention on v
3. Scalability across NUMA nodes

→ SySCD addresses all of these

Resolving write-contention on v

co
re

co
re

co
re

co
re

co
re

co
re

co
re

co
re

v

CPU

Resolving write-contention on v

co
re

co
re

co
re

co
re

co
re

co
re

co
re

co
re

CPU

v
1

v2

v3

v
P

…

replicate v across threads

auxiliary model inspired by CoCoA [Smith’18]

threads

Resolving write-contention on v replicate v across threads

Connection to Distributed Methods

worker worker worker worker

shared vector v

model 𝜶

data A

• data is partitioned across
workers

• each worker has its own
replica of the shared
vector which is
synchronized periodically

core core core core

Connection to Distributed Methods

one physical machine

shared vector v

model 𝜶

data A

• In the parallel setting a
worker corresponds to a
core

• Motivation of data
separability is not
communication- but
implementation-efficiency

Repartitioning

core core core core

one physical machine

shared vector v

model 𝜶

data A

• In the parallel setting we
can afford to repartition
the data in each round

✓ Improved convergence
behavior

• Combination of distributed methods with repartitioning

• Additional optimizations (not covered in this talk)

> 10x faster than sate-of-the-art asynchronous CD methods

#39

✓ NUMA - affinity

✓ alignment with cache access pattern

✓ high implementation efficiency

✓ theoretically sound parallel method

✓ scales to large degrees of parallelism

System-Aware Coordinate Descent (SySCD)

poster

#39
poster

